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1. Introduction

The origin of CP violation within the standard model remains an essential theoretical

problem. Current empirical evidence strongly favors the weak interactions as the source of

observed CP violation through complex phases within the CKM matrix [1]. The lack of a

Nambu-Goldstone boson interpretation for the η meson, associated with the spontaneous

breaking of a global U(1) flavour symmetry [2], suggests the existence of a non-trivial

QCD vacuum structure [3], which, in principle, violates CP. Extending the effective QCD

Lagrangian to include the most general vacuum structure yields

Leff = LQCD + Θ̄
g2

32π2
Fµν

a F̃µνa. (1.1)

The effective strong CP violation parameter, Θ̄, contains contributions from both QCD

and quantum flavour dynamics, namely

Θ̄ = Θ + arg (det M) (1.2)

where M denotes the quark mass matrix and Θ labels the CP violation term arising solely

from QCD. From the low energy effective field theory point of view, Θ̄ appears as a standard

model input. Empirical measurements, such as those arising from limits on the neutron’s

electric dipole moment indicate [4],

Θ̄ . 10−9. (1.3)

A priori, Θ̄ could have a value anywhere on the interval [0, 2π] and the origin of this

parameter’s seemingly unnatural tiny value constitutes the strong CP problem (see [5 – 7]

for reviews).

Perhaps the most elegant solution to the strong CP problem rests on the Peccei-Quinn

(PQ) mechanism [8]. In this scenario, Θ̄ becomes effectively promoted to a field — the
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axion — identified as a pseudo-Nambu-Goldstone mode associated with the spontaneous

breaking of a global U(1)PQ symmetry [9]. As the axion dynamically relaxes to the origin

of its potential, Θ̄ vanishes. Augmenting the QCD Lagrangian of eq. (1.1) by the PQ

mechanism one finds,

Leff = LQCD +
1

2
∂µa∂µa +

a

fPQ
ξ

g2

32π2
FµνaF̃µνa (1.4)

where fPQ denotes the axion decay constant set by the scale of U(1)PQ breaking, and the

parameter ξ arises as a model dependent factor. The axion obtains its mass [10] through

QCD instanton effects that explicitly violate the U(1)PQ symmetry and thereby provide

the axion with a potential, yielding

ma ∼
Λ2

QCD

fPQ
(1.5)

where ΛQCD ≈ 250 MeV. Constraints from laboratory searches, astrophysics, and early

universe cosmology bound fPQ (see [7, 11] for reviews),

109 GeV . fPQ . 1012 GeV (1.6)

which, by eq. (1.5), implies,

10−5 eV . ma . 10−2 eV. (1.7)

We should emphasize that the PQ mechanism intimately links the scale of U(1)PQ breaking,

fPQ, and the axion mass. The PQ mechanism and the resulting axion present a solution

to the strong CP problem, however, the particulars of the UV embedding remain model

dependent.1

One of the most striking axion scenarios results upon embedding the PQ framework

within large extra dimensions [14, 15]. If the axion appears as a bulk pseudoscalar, novel

features emerge [15], such as Kaluza-Klein (KK) mode interference, non-trivial axion mass

relations, and increased energy dissipation among cosmological relic axions. With the

advent of warped compactifications [16], whereby large scale hierarchies can be understood

through exponential red-shifting, several attempts were made in constructing warped axion

models using both bottom-up approaches [17] and top down string constructions [18, 19].

In traditional warped extra-dimensional models that address the gauge hierarchy problem

of the standard models, the first KK excitations of bulk fields occur near the electroweak

scale, namely on the order of 10TeV. However, generic flux compactifications allow for

backgrounds with several “throats” [20] originating from a compact Calabi-Yau manifold.

As demonstrated in [21], additional throats can provide new model building avenues for

axions. In principle, the multiple throats could have widely different AdS5 curvature radii

and thus bulk fields would have their KK spectra dictated by the geometry of their throat.

Motivated by these observations, we model-independently consider the extra-dimensional

1Cf. [12, 13] for the most well know implementations and see [7, 6] for reviews.
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phenomenology of a bulk axion in a throat separate from the standard model with an AdS

inverse curvature radius of k ∼ 10−2 eV and with kR ∼ O(1). For simplicity, we will

assume that the standard model remains confined to a UV brane. In this scenario, the

axionic KK excitations appear hierarchically lower than the electroweak scale. The setup

provides a warped extension to the flat extra-dimensional axion phenomenology studied

in [15].

2. Axions in a warped background

As a toy example and proof of principle, we will assume that the axion arises as a Nambu-

Goldstone mode associated with a higher dimensional complex scalar field which sponta-

neously breaks a U(1)PQ symmetry,

φ ≈ f̃PQ√
2

eia/f̃PQ . (2.1)

We will further assume that the vev remains constant over the entire AdS5 slice. This

scenario can arise through a simple multi-throat model where the standard model exists

in its own throat (SM throat) while the complex scalar exists in a separate throat (PQ

throat) as illustrated in figure 1. In the PQ throat we have,

SΦ = M5

∫

d5x
√

|g|gMN∂MΦ∗∂NΦ (2.2)

where upon decomposing Φ = η(y) exp(ia(y)) we apply the boundary conditions

η|IR = v η|UV = v

∂a|IR = 0 ∂za|UV = 0 (2.3)

which break the global U(1)PQ symmetry and yield a constant solution 〈η〉 = v for the

vev. The resulting axion, a(y), couples to the standard model via UV brane-localized

interactions.2

While generically we also expect a KK tower associated with the radial mode, we do

not allow any radial mode-standard model interactions. Furthermore, the radial mode

interactions appear through derivative couplings suppressed by powers of f̃PQ. As we will

show later in this section, these couplings are further suppressed by a volume factor. As a

result, for the remainder of this paper we will ignore the effects of the radial mode.

We stress that the above toy model only represents a proof of principle. We will take

a model independent approach in that we will not consider any particular implementation

of the PQ symmetry breaking mechanism within the AdS5 set-up other than insisting on

2In [21], the UV brane localized interactions are mediated by exotic coloured fermions, Q̄, Q, with

action SQ=
R

d4x
p

|gind|UV (ΦQ̄LQR + Φ∗Q̄RQL). Under a U(1) chiral rotation of the Q fields, the

axion coupling becomes transfered to a gluon topological term of QCD on the UV brane, namely

Sint=
R

d4x (32π2fPQ)−1aFµν F̃ µν which corresponds to the generic UV localized axion coupling we use

in this article.
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(a)

(b)

Figure 1: Illustration of a two throat axion toy model. a) The standard model lives in left AdS5

throat while a complex scalar field Φ with phase a (the “axion”) lives in the right throat. The two

throats communicate via UV brane localized coloured fermions, Q, Q̄. b) Once the PQ symmetry

is broken, the resulting bulk pseudoscalar axion effectively sees the standard model as UV confined

matter. Each throat has its own inverse AdS5 curvature denoted by k1 and k2.

the constancy of the vev across the AdS5 slice. In this paper, we only wish to explore the

phenomenology of a bulk axion in a warped geometry. We will assume that the standard

model remains confined to the UV brane and that the axion propagates in the bulk (as in

figure 1 (b)). Since we assume that the axion potential only arises from QCD instanton

effects, we will omit bulk or boundary mass terms for the axion. Defining the line element

within the AdS5 space as,

ds2 = e−2kyηµνdxµdxν + dy2 ≡ gMNdxMdxN (2.4)

– 4 –
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(ηµν = diag(−1, 1, 1, 1)) our action reads,

Seff =

∫

d4xdy e−4ky

[

LSMδ(y) +
1

2
gMN∂Ma∂Na +

g2ξ

32π2

a

f̃PQ

Fµν F̃µνδ(y)

]

. (2.5)

The axion field, a(x, y), carries mass dimension [3/2] implying that [f̃PQ] = 3/2. The five

dimensional Newton’s constant has been absorbed into the field definitions. Application of

Neumann boundary conditions in the absence of bulk or boundary axion mass terms leads

to the KK decomposition,

a(x, y) =
1√
2πR

∑

n=0

an(x)φn(y) (2.6)

=
1√
2πR

a0(x)φ0 +
1√
2πR

∑

n=1

anφ0(y) (2.7)

where φ0 is a constant. Decomposing the action leads to,

S =

∫

d4xdy e−4ky

[

e2ky 1

2
ηµν∂µa∂νa +

1

2
(∂5a)2 +

g2ξ

32π2

a

f̃pq

Fµν F̃µνδ(y)

]

. (2.8)

The kinetic terms,

∂µa∂µa =
1

2πR

(

∂µ

∑

n=0

anφn

)(

∂µ
∑

n=0

anφn

)

, (2.9)

contain no cross terms since the wave function profiles satisfy the orthogonality condition

1

πR

∫ πR

0
dy e−4kye2kyφmφn = δmn (2.10)

for all n,m — including the zero mode. We may write the wave function profiles as,

φn =
e2ky

Nn

[

J2

(mn

k
eky

)

+ b
(n)
2 Y2

(mn

k
eky

)]

(2.11)

for n > 0 with the normalization factor,

N2
n =

1

πR

∫ πR

0
dy

[

J2

(mn

k
eky

)

+ b
(n)
2 Y2

(mn

k
eky

)]2
. (2.12)

The coefficients b
(n)
2 are determined by,

b
(n)
2 = − 2J2(mn/k) + (mn/k)J ′

2(mn/k)

2Y2(mn/k) + (mn/k)Y ′
2(mn/k)

(2.13)

b
(n)
2 (mn) = b

(n)
2 (mneπkR) (2.14)

and we now can re-express the 4-D action as

S =

∫

d4x

[

1

2

∑

n=0

∂µan∂µan − 1

2

∑

n=1

m2
n(an)2 +

g2ξ

32π2

1√
2πR

1

f̃pq

Fµν F̃µν
∑

n=0

anφn(0)

]

.

(2.15)
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At this point, we will now make the definition,

f̂pq =
√

2πRf̃pq (2.16)

leading to the parameter f̂pq which has canonical mass dimension 1. The parameter f̃PQ

implicitly depends on the 5-dimensional Newton’s constant. Thus, a volume factor relates

the two parameters in eq. (2.16). This allows us to set f̂PQ to a hierarchically high scale.

Like the flat extra dimensional counterpart [15], this construction solves the strong CP

problem. Using the one-instanton dilute gas approximation, we have

〈Fµν F̃µν〉 = −Λ4
QCD sin

(

ξ

f̂pq

∑

n=0

anφn(0) + Θ̄

)

(2.17)

which gives rise to the axion potential,

V =
1

2

∑

n=1

m2
n(an)2 +

g2

32π2
Λ4

QCD

[

1 − cos

(

ξ

f̂pq

∑

n=0

anφn(0) + Θ̄

)]

. (2.18)

The CP conserving minimum appears from,

0 =
∂V

∂an
= m2

nan + φn
ξ

f̂pq

g2

32π2
Λ4

QCD sin

(

ξ

f̂pq

∑

n=0

anφn(0) + Θ̄

)

(2.19)

leading to the condition:

〈a0〉 =
f̂pq

ξ

lπ − Θ̄

φ(0)(0)
l ∈ 2Z

〈an〉 = 0 n > 0. (2.20)

We see that only the zero mode serves as the true axion. The higher dimensional axion

mass matrix obtained from eq. (2.19) reads,

M2
mn =

∂2V

∂am∂an
(2.21)

= m2
nδmn +

g2ξ2

32π2

Λ4
QCD

f̂2
pq

φm(0)φn(0) cos

(

ξ

f̂pq

∑

n=0

anφn(0) + Θ̄

)∣

∣

∣

∣

∣

〈a〉

(2.22)

and therefore we obtain,

M2
mn = m2

PQ

(

φm(0)φn(0) + y2
nδmn

)

(2.23)

with

m2
PQ =

g2ξ2

32π2

Λ4
QCD

f̂2
pq

(2.24)

y2
0 = 0 (2.25)

y2
n =

m2
n

m2
PQ

n > 0. (2.26)
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We can re-express φ(m)(0) using appropriate Bessel function identities,

b
(n)
2 = −J1(mn/k)

Y1(mn/k)
(2.27)

yielding

φn(0) =
1

Nn

[

J2

(mn

k

)

− J1(mn/k)

Y1(mn/k)
Y2

(mn

k

)

]

. (2.28)

2.1 Axion KK mode mixing

The important difference between the usual 4-dimensional axion and its higher dimensional

implementation centers on the effects of KK mode mixing given in eq. (2.23). It has been

shown [15] that flat compactifications can lead to a divorcing of the axion zero mode mass

from the PQ scale, leading to the approximate relation

m0 ≈ min

(

1

2
R−1,mPQ

)

(2.29)

for the lightest axionic state. The mixing of the axion KK modes, via the mass matrix

eq. (2.23), leads to important differences between the physics of the usual four-dimensional

axion and its higher-dimensional counterpart. In the standard four-dimensional axion sce-

nario, the PQ scale not only sets the mass of the axion but also controls the strength of

the axion coupling to the standard model. Observational constraints imply a PQ scale be-

tween 109 GeV and 1012 GeV corresponding to an axion mass window of 10−5 eV. mPQ .

10−2 eV. In the extra dimensional situation, where the axion appears as a bulk field, these

standard arguments no longer apply: the would-be axion a0 mixes with the KK tower

via the mass matrix eq. (2.23). This mixing implies that mPQ no longer sets the lightest

axion state. Using the property that the smallest eigenvalue of a real symmetric matrix is

bounded above by the eigenvalues of any diagonal block, one can show (from the upper-left

2 × 2 diagonal block of eq. (2.23)) that the mass of the lightest axionic state is bounded

above by both mPQ and m1. Hence, ma ≤ min(mPQ,m1), and we see that for mPQ & m1,

the lightest axion mass decouples from mPQ (and therefore f̂PQ) - the lightest KK mass

can set the scale. This result parallels the flat extra-dimensional case (see eq. (47) of [15])

where the inverse radius of the extra dimension can also set the lightest axion mass.

Once the compactification radius and fPQ are chosen within the flat compactification

scenario, the form of eq. (2.23) becomes fixed and leads to a definite KK mixing pattern.

Warped compactifications lead to more freedom. In the large kR limit (kR À 1), we have

Nn ≈ eπkR/2

√
π2Rmn

, (2.30)

and, using asymptotic expansions for all the Bessel functions involved, we obtain

φn(0) ≈ −πe−πkR/2
√

Rmn

[

1 − 1

8

(mn

k

)2
]

. (2.31)
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The mass matrix eq. (2.23) becomes

M2 =m2
PQ













2πkR −
p

2π3kR2m1e−πkR/2 −
p

2π3kR2m2e−πkR/2 −
p

2π3kR2m3e−πkR/2 . . .

−
p

2π3kR2m1e−πkR/2 e−πkRπ2(m1R) +
m2

1
m2

PQ

e−πkRπ2R
√

m1m2 e−πkRπ2R
√

m1m3 . . .

−
p

2π3kR2m2e−πkR/2 e−πkRπ2R
√

m2m1 e−πkRπ2(m2R) +
m2

2
m2

P Q

e−πkRπ2R
√

m2m3 . . .

−
p

2π3kR2m3e−πkR/2 e−πkRπ2R
√

m3m1 e−πkRπ2R
√

m3m2 e−πkRπ2(m3R) +
m2

3
m2

PQ

. . .

. . . . . . . . . . . . . . .













.

(2.32)

This pattern substantially differs from the flat compactification scenario. The main new

feature concerns the mass of the zero mode. Like the flat 5-dimensional case, the axion

does not receive a mass term until mPQ turns on. By contrast, in the highly warped case,

the zero mode “axion” contributes a mass eigenvalue of

m0 ≈ mPQ

√
2πkR. (2.33)

In particular, this mass eigenvalue can be tuned relative to the first several KK states.

Furthermore, the amount of mixing between the zero mode and the other KK states be-

comes tunable through the warping, kR. We note that if we choose kR ¿ 1 at fixed R, we

recover the flat higher dimensional results.

We should also emphasize the nature of the mixing matrix at large KK number. In

this case,

b
(n)
2 = −J1(mn/k)

Y1(mn/k)
≈ − cot(mn/k − 3π/4) ⇒ mn =

nπk

eπkR − 1
(2.34)

and we find,

N2
n ≈ 1

π2Rmn
csc2

(

mn

k
− 3π

4

)

eπkR (2.35)

which leads to

φn ≈
√

2
(√

πRke−πkR/2
)

n À 1. (2.36)

In this limit, eq. (2.23) now reads,

M2 = m2
PQ(πRk)e−πkR ×

×















. . . . . . . . . . . . . . .

. . . 2+
πn2(k/R)e−πkR

m2
P Q

2 2 2

. . . 2 2+
π(n+1)2(k/R)e−πkR

m2
PQ

2 2

. . . 2 2 2+
π(n+2)2(k/R)e−πkR

m2
P Q

2

. . . 2 2 2 2+
π(n+3)2(k/R)e−πkR

m2
PQ















. (2.37)

Apart from the exponential suppression factors, the mixing matrix approaches the flat case

form. We stress that the φn coefficients approach a constant as n → ∞. This feature will

play an important role in the following sections.

3. Decoherence, invisibility, energy loss, and detection

Perhaps the greatest potential threat to extra dimensional axion scenarios concerns the

loss of invisibility. While each individual KK mode couples with 1/f̂PQ (as in [15]), the

– 8 –
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“axion” is produced in a linear superposition of KK modes. The effective coupling to

this superposition determines the axion’s invisibility. Therefore, the effective interaction

Lagrangian reads,

Lint =
g2ξ

32π2

√
N

a′

f̂PQ

FµνaF̃µνa (3.1)

where N is a normalization factor defined by,

N =

nmax
∑

n=0

(φn)2 (3.2)

and

a′ =
1√
N

nmax
∑

n=0

φnan (3.3)

defines the “axion”. We stress that only the zero mode state, a0, serves as the true axion in

this set up as only a0 inherits the shift symmetry from the five dimensional theory. Since

the entire linear superposition of the KK tower given by a′ enters the effective Lagrangian,

the KK sum must be truncated — presumably at the cutoff of the 5-D effective field theory.

However, processes which produce on-shell axions should not include KK states above the

characteristic production scale.

If we consider axion processes at characteristic energy E, the effective field theory

which results from integrating out axion mass eigenstates that exceed E reads, Leff =

Σnmax
n=0 (∂an)2 + Σnmax

m,n=0Mmnaman + g2ξ

32π2 ˆfPQ

Σnmax
n=0 φnan. Ignoring the the effects of mixing

from eq. (2.23), we can approximate nmax through mnmax ' E. We see that the gauge fields

couple to the normalized linear superposition a′ = (N(E))−1/2Σnmax
n=0 φnan with coupling

strength
√

N(E)f̂−1
PQ. The normalization factor N(E) = Σnmax

n=0 φ2
n enhances the effective

coupling. For clarity we have indicated the implicit energy dependence of N arising from

the condition mnmax ' E. Thus, the effective coupling strength of the linear superposition

a′ depends on the characteristic energy scale as does the composition of a′, and the deter-

mination of axion invisibility becomes much more subtle in an extra-dimensional scenario.

Furthermore, the state a′ produced in interactions with visible matter is manifestly not a

mass eigenstate, and so neither its mass nor its lifetime are well-defined.

Since N depends on KK number, and since the kinematics of a given process fix the

number of modes included in a′, the effective coupling in eq. (3.1) grows with energy. In

general, eq. (2.23) creates a misalignment between mass and interaction eigenstates such

that

âl =

nmax
∑

n=0

Ulnan, (3.4)

where â denotes the mass eigenstate and U diagonalizes the axion mass matrix, eq. (2.23).

From the 4-dimensional perspective, at a given energy scale, a′ appears as a field in the

interaction basis. As the state a′ propagates, the individual KK modes interfere, creating

an axion oscillation phenomenon. Again, we stress that a′ consists of a superposition of

mass eigenstates and does not have a well-defined lifetime or mass. We will examine two

important physical consequences: energy loss and direct detection.

– 9 –
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The strongest bounds on the 4-dimensional Peccei-Quinn scale arise from stellar cooling

constraints. Weakly coupled axions provide new channels for stellar energy loss and the

total luminosity in axions must not upset stellar evolution. The current lower bound on

the Peccei-Quinn scale in the usual 4-dimensional axion scenario from HB stellar cooling

reads (see [11] and references therein),

fPQ & 2 × 109 GeV. (3.5)

This bound applies provided that the axion mass does not wildly exceed the internal

temperature of the star and the coupling remains sufficiently weak [11]. In the higher

dimensional analogue, the effective coupling contains energy dependence from the inclusion

of KK modes. Thus, eq. (3.5) becomes modified, leading to

f̂PQ
√

N(E)
& 2 × 109 GeV (3.6)

where N(E) denotes the normalization factor of eq. (3.2) which includes modes up to

nmax. For simplicity, we will assume that the mode superposition within a′ contains states

up to a cutoff defined through the internal stellar temperature via mnmax = T . We will

also make the further approximation that the usual 4-dimensional kinematical phase space

constraints apply for a′ production.3

In the warped case, we can provide an estimate on the energy dependence of N(E).

If we approximate the mass spectrum by the KK masses (again, ignoring the effect of

eq. (2.23) on the mass eigenvalues), at large KK number we have

E ≈ mnmax ≈ πke−πkR (3.7)

which leads to

nmax ≈ E

πk
eπkR. (3.8)

From eq. (3.2), and using the asymptotic approximation for all φn, eq. (2.36), we can obtain

an approximate explicit formulation of N(E) in terms of the kinematic cutoff,

N(E) ≈ (2πkR)

(

1 + e−πkR
nmax
∑

n=1

(1)

)

≈ 2ER. (3.9)

Thus, at a fixed energy, the effective Peccei-Quinn scale for a′ becomes

f̂ eff
PQ

∣

∣

∣

E
≈ f̂PQ√

2RE
(3.10)

where we assume RE À 1. In order to satisfy HB stellar evolution constraints (assuming

core temperatures of ∼ 8 keV [11]), we require

f̂ eff
PQ

∣

∣

∣

E=8 keV
& 2 × 109 GeV (3.11)

3Strictly speaking, we expect that thermal corrections to the phase space will play a role in the production

of the more massive states in the superposition, as shown in [22]. Since we crudely truncate the tower at

T , for the purposes of this paper, we ignore these effects.
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implying,
f̂PQ

√

(2R) · 8 keV
& 2 × 109 GeV. (3.12)

Note the above result obtained for a warped compactification gives comparable bounds for

flat compactification [15, 22]:

nmax = ER (3.13)

and thus,

NE = 1 +

nmax
∑

n=1

2 ≈ 2ER. (3.14)

Both the flat and warped compactifications give the same normalization factor at fixed

energy.

While the enhanced coupling must satisfy the astrophysical energy loss constraints, the

effects of the superposition within the a′ field lead to phenomenological consequences in

direct detection searches. Again, the relevant quantity is not the individual KK modes nor

the suppressed coupling f̂PQ, but the superposition a′ with coupling f̂ eff
PQ. Even though the

extra-dimensional scenario leads to an enhanced coupling, the KK modes interfere during

propagation. Only the linear superposition a′ couples to standard model fields. It has been

shown [15] in flat compactifications that destructive interference is crucial in re-establishing

invisibility as it reduces the expected flux measured from distant sources.

In order to determine what fraction of the flux produced by a distant source can be

detected, we must calculate the survival probability of the a′ field itself. The amplitude

for individual KK axion transitions is given by,

Ak→l(t) =
∑

i

UilU
∗
ik exp

(

−i
m2

i

2p
t

)

(3.15)

where mi denotes the mass eigenvalue arising from eq. (2.23), and U labels the unitary

matrix that diagonalizes the axion mass matrix. We have ignored the possibility of axion

decay throughout. The probability that a′ remains preserved during propagation reads,

Pa′→a′(t) =
1

N2

∣

∣

∣

∣

∣

∣

∑

k,l

φlφkAk→l(t)

∣

∣

∣

∣

∣

∣

2

. (3.16)

Therefore, the expected measurable flux arriving from a distant source appears as,

Φ = 〈Pa′→a′〉Φ0 (3.17)

where Φ0 denotes the flux as calculated using the enhanced coupling f̂ eff
PQ in the absence

of decoherence. Since 〈Pa′→a′〉 ≤ 1 we see that interference serves to reduce the the total

measurable flux.

As an estimate of the decoherence time we consider the time it takes for the largest

mass eigenstate in the linear superposition, a′, to step completely out-of-phase with the

zero mode. Applying this out-of-phase condition to eq. (3.15) yields,

0 = cos

(

m2
n − m2

0

2p
t0

)

(3.18)
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and we find that,

τ∗
0 ≈

m2
PQ

(nπk)2
e2πkR. (3.19)

The parameter τ∗
0 , defined through τ∗

0 = t0(m
2
PQ/2p) (where p denotes the usual 3-

momentum), gives a dimensionless time element. In the flat case limit, eq. (3.18) yields,

τ∗
0 ≈

(

mPQR

n

)2

(3.20)

in agreement with [15].

Note that τ∗
0 denotes a “decoherence time” defined by Pa′→a′(τ∗

0 ) ∼ 〈Pa′→a′〉 — i.e. the

time taken for Pa′→a′(t) to reach its time independent average value. The scaling argument

proceeds subtly. We know that the axion remains in the a′ state as mPQ → 0 since the

mass matrix of eq. (2.23) becomes diagonal in this limit and, as a result, no mode mixing

can occur (i.e. the transition amplitudes become diagonal, Ak→l = δkl). This leads to the

complete lack of decoherence and reproduces the usual 4-dimensional axion scenario. As

mPQ → 0 we find that τ∗
0 → 0, implying a vanishing decoherence time. This result remains

consistent since Pa′→a′(τ) ∼ 〈Pa′→a′〉 → 1 in this limit. Thus, even though τ∗
0 → 0 as

mPQ → 0 we also have 〈Pa′→a′〉 → 1 and hence decoherence does not occur.4

The largest KK mass in both the flat and warped cases govern eq. (3.19) and eq. (3.20).

We may re-write the decoherence time as

τ∗
0 ≈

(

mPQ

m
(n)
KK

)2

, (3.21)

which holds for both cases. Approximating the energy of the linear superposition through

the mass of the heaviest mode we find,

τ∗
0 ≈

(mPQ

E

)2
(3.22)

which is independent of the details of the compactification. Thus, provided that many

modes appear in the superposition, large warped and flat compactifications lead to the

same decoherence time at fixed energy.

Furthermore, we can obtain a semi-analytic expression for the resulting time indepen-

dent average value 〈Pa′→a′〉. In the flat compactification at fixed mPQ and fixed R, it has

been shown [15] that 〈Pa′→a′〉 ∼ 1/n. This behaviour follows from expanding eq. (3.15)

and eq. (3.16). Applying these results to the flat compactification scenario gives

Pa′→a′ ∼ 1

n



a
∑

i

+2b
∑

i<j

cos

(

[m2
i − m2

j ]t

2p

)



 . (3.23)

4We stress that our definition of decoherence differs from [15] where the authors define decoherence by

fixing Pa′→a′(τ0) = 0.90 for all values of mPQ and R. Their definition requires a non-trivial mode number

renormalization in which the energy dependence of feff
PQ, of the a′ composition — and therefore the energy

dependence of Pa′→a′ — is not manifest.
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The O(1) coefficients a and b result from from the unitary matrix that diagonalizes the flat

extra-dimensional axion mass matrix. At t = 0 eq. (3.23) gives the expected result

Pa′→a′ ∼
(

1

n2

)

n2 ≈ 1. (3.24)

At later times, the cosine terms no longer add coherently and thus eq. (3.23) reduces to

Pa′→a′ ∼
(

1

n2

)

n ∼ 1

n
. (3.25)

The warped case proceeds in a similar fashion. By observing that eq. (2.37) has

the same structure as the resulting flat compactification matrix (apart from an overall

multiplicative factor), we see that eq. (3.23) applies. In particular, at large mode number,

the essential difference between the warped and flat compactifications centers on the density

of KK states. At a fixed energy, the warped compactification contains ∼ πkR exp(πkR)

more modes than the flat case. Eq. (3.23) then tells us the scaling in the warped case

appears as,

Pa′→a′ ∼ eπkR

πkR

(

1

n

)

(3.26)

indicating an exponentially larger value for the expectation of Pa′→a′ at fixed n as compared

to the flat compactification result. However, if we compare the results eq. (3.25) and

eq. (3.26) not at fixed n, but at fixed energy we find that in both cases

Pa′→a′ ∼ 1

ER
, (3.27)

since the warped case yields the approximate relation E ∼ nπkR exp(πkR). Remarkably,

at fixed energy, both the warped and flat extra dimensional axion scenarios lead to a similar

value for 〈Pa′→a′〉. Thus, while it appears that at fixed mode number warped compactifi-

cations permit decoherence times that are substantially longer than those occurring in the

flat case limit, physical processes cutoff the mode number in both cases to yield a result

that is largely independent of the compactification.

As examples, we show the effect of warping on the decoherence time relative to flat

compactifications in figures 2 and 3. In both cases, we have taken R = 1/(10−2 eV) ≈ 10µm,

f̂PQ = 1011 GeV.

In figure 2, where a fixed number of 30 KK modes are used, it appears as though

the reduced mixing in the warped compactification scenario (see eq. (2.23)) reduces the

axion’s ability to decohere. Figure 2(a) displays the effect with a mild warp factor of

kR = 0.5. In this case, we find that the flat compactification large time limit yields

〈Pa′→a′〉 ≈ 3.3×10−2 while the warped compactification gives a similar value of 〈Pa′→a′〉 ≈
3.9× 10−2. In figure 2(b) we use a larger warp factor of kR = 1. The flat compactification

reproduces 〈Pa′→a′〉 ≈ 3.3 × 10−2 in the large time limit. On the other hand, the warped

compactification large time limit yields 〈Pa′→a′〉 ≈ 0.23, marking a significant departure

from the flat compactification result at fixed mode number.

However, in physical processes, the maximum mode number within the linear superpo-

sition is fixed by kinematics. While the axion mass matrix in the warped case appears with
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Figure 2: The axion survival probability with kR = 0.5 and kR = 1 with 30 KK modes in-

cluded. Plots a) and b) displays the flat compactification (dashed-dotted) along with the warped

compactification (solid line). In all plots R = 102 eV−1, and f̂PQ = 1011 GeV.

suppressed mixing relative to the flat case, the KK spectrum also appears more dense. The

increase in mode number in the warped case makes up for the suppressed mixing leading to

eq. (3.27) — i.e. the same result as derived in the flat compactification scenario. Figure 3

displays the results at fixed energy, again for kR = 0.5 and kR = 1. In this case we have

taken the mode number cutoff determined through E = 0.1 eV in both cases. We see that

τ∗
0 and the final value for 〈Pa′→a′〉 appear approximately the same.

4. Comment on cosmological relic axions

Cosmological relic axions provide strong constraints on the invisibility of the axion in

the usual 4-dimensional PQ mechanism. During the universe’s early thermal history, the

universe passed through the QCD phase transition, at time tQCD, at which point QCD

instanton effects established an axion potential where none existed previously. By natural-

ness, we expect that the axion would find itself displaced from the minimum of its potential

by an O(1) fraction of f̂PQ. At this point, the axion would begin to oscillate about the
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Figure 3: The axion survival probability with kR = 0.5 and kR = 1 at a fixed energy of 0.1 eV.

Plots a) and b) displays the flat compactification (dashed-dotted) along with the warped compact-

ification (solid line). In all plots R = 102 eV−1, and f̂PQ = 1011 GeV. Note that τ∗

0
≈ (mpq/E)2

and 〈Pa′
→a′〉 ≈ 1/ER in both cases.

minimum via

d2a

dt2
+ 3H(t)

da

dt
+ m2

aa = 0. t > tQCD (4.1)

with the initial condition a(tQCD) ∼ f̂PQ. These relic oscillations, while damped through

Hubble expansion, continue to store energy and must not exceed the present day critical

density. Cosmological considerations provide a constraint from above on f̂PQ in the usual

4-dimensional PQ mechanism, namely f̂PQ . 1012 GeV.

As displayed in figure 4, the extra dimensional situation proceeds differently. As each

KK mode has a potential prior to the QCD phase transition and following [15], we can

approximate each KK mode as sitting at the minimum of its potential at tQCD. By contrast,

the zero mode (which represents the true axion) does not receive a potential until the

instanton effects turn on at tQCD. Thus, we expect at tQCD that the zero mode will have

a natural displacement from its minimum, i.e. a0(tQCD) ∼ f̂PQ, al(tQCD) = 0 for l > 0,
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Figure 4: Higher dimensional induced KK oscillation plot as a function of time (dimensionless)

with tQCD = 1; mpq = 4 × 10−4 eV, R = 1/(2 × 10−4 eV). Plot a) shows the first three KK

mode oscillation with flat compactification (dashed-dotted) lines. The solid line denotes the usual

4-dimensional axion scenario. Plot b) displays the effect of warping with kR = 2 among the first

three modes. Again, the solid line denotes the usual 4-dimensional axion scenario.

and dal/dt = 0 for all l. In the extra dimensional case, eq. (4.1) reads,

d2al

dt2
+ 3H(t)

dal

dt
+ M2

lkak = 0 t > tQCD (4.2)

where M2
lk denotes the non-diagonal axion mass matrix. Once the zero mode begins to

oscillate, the non-diagonal mass matrix in eq. (4.2) induces sympathetic KK mode oscil-

lations that potentially have the ability to alter the cosmological constraints obtained in

the usual 4-dimensional case. It has been shown in [15] that for certain parameter choices

the oscillating KK modes can dissipate the oscillation energy more quickly relative to the

4-dimensional case, allowing f̂PQ to become as large as ∼ 1016 GeV. However, once con-

straints from low energy phenomenology and gravity are applied, it can be shown [15] that

the extra-dimensional situation dissipates the oscillation energy at the same rate as the

usual 4-dimensional scenario. Remarkably, cosmological constraints on the flat the extra-

dimensional axion scenario lead to the same viability as the usual 4-dimensional axion.
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Following [15], the results of the flat extra-dimensional case can be readily extended

to warped compactifications. We can transform to the mass eigenbasis such that eq. (4.2)

appears as a set of uncoupled ordinary differential equations,

d2ãl

dt2
+

3

2t

dãl

dt
+ m2

l ãl = 0, (4.3)

where we have assumed a radiation dominated epoch, H(t) = 3/2t, and we have defined

ãl = âl/f̂PQ. For each uncoupled differential equation in eq. (4.3), we can use the dimen-

sionless time element τ = mlt leading to,

d2ãl

dτ2
+

3

2τ

dãl

dτ
+ ãl = 0, (4.4)

The initial conditions now read,

ãl(τ0) = U0l,
dãl

dτ

∣

∣

∣

∣

τ=τ0

= 0 (4.5)

where U diagonalizes the axion mass matrix, eq. (2.23). Using the initial conditions in

eq. (4.5), the general solution to eq. (4.4) reads,

ãl(τ) = − π√
2
U0lτ

5/4
0 τ−1/4j(τ0; τ) (4.6)

where

j(τ0; τ) = J−5/4(τ0)J1/4(τ) + J5/4(τ0)J−1/4(τ). (4.7)

This solution matches the results given in [15] up to the unitary matrix element, U0l.

Defining the dimensionless mass eigenvalue m̃l = ml/mPQ the total energy density can be

written as,

ρ̃(τ) =
∑

l

m̃2
l

2

(

ã2
l +

(

dãl

dτ

)2
)

(4.8)

with ρ̃ ≡ ρ/(m2
PQf̂2

PQ). More succinctly, by defining t̃ = mPQt, the total energy density

becomes,

ρ̃(t̃) =
π2

4
t̃
5/2
0 t̃−1/2

∑

l

U2
0lm̃

4
l

(

j(m̃l t̃0; m̃l t̃)
2 + j′(m̃l t̃0; m̃l t̃)

2
)

. (4.9)

In the large time limit m̃l t̃ À 1 eq. (4.9) becomes,

ρ̃(t̃) =
π

2
X(t̃0)t̃

5/2
0 t̃−3/2 (4.10)

where the time independent coefficient X(t̃0) reads

X(t̃0) =
∑

U2
0lm̃

3
l

(

[J5/4(m̃l t̃0)]
2 + [J−5/4(m̃l t̃0)]

2 +
√

2J5/4(m̃l t̃0)J−5/4(m̃l t̃0)
)

. (4.11)

Again, this result appears the same as in the flat compactification [15] up to the unitary

matrix element. Since the energy density for the four dimensional case in the large time

limit has the same form as eq. (4.10) except with

X4D(t0) = [J5/4(t̃0)]
2 + [J−5/4(t̃0)]

2 +
√

2J5/4(t̃0)J−5/4(t̃0) (4.12)
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the ratio of the energy densities can be expressed as [15],

rρ ≡ ρ(t)

ρ4D(t)
=

X(t̃0)

X4D(t̃0)
. (4.13)

As in the flat case, rρ can significantly deviate from unity leading to a weakening of the

upper bound on f̂PQ. This deviation occurs only in the limit where t̃0m̃l < O(1) (i.e. the

Bessel functions in eq. (4.11) do not approximate their asymptotic limit) for a significant

number of modes which also includes the mass eigenvalue contributed by the mode a0.

Nevertheless, rρ saturates at unity which implies that extra-dimensional axions — warped

or flat — remain viable cosmologically. In figure 5 we have displayed three cases, t̃0 =

0.1, 1, 10, with mPQR = 1. We find that as the warping becomes increased, the deviation of

rρ from unity increases as well, provided that the mass eigenvalue contributed by a0 satisfies

t̃0m < O(1). While the plots in figure 5 demonstrate the potential ability of warping to

further increase the viability of the extra dimensional axion scenario, we caution that the

large departure of rρ from unity crucially hinges on certain parameter choices. In the flat

case, the condition required for rρ < 1 reads tQCD/R . O(1) — a condition requiring

R ∼ 1010 eV−1! This result wildly contradicts constraints from gravity. The warped case

proceeds more subtly. If the zero-mode in eq. (2.23) contributes a typical mass eigenvalue

of ∼ kπ exp(−πkR) to the KK spectrum then, provided that tQCDkπ exp(−πkR) . O(1), a

departure of rρ from unity can be expected. However, in the large warping limit (kR & 1),

the zero-mode clearly contributes ∼ mPQ

√
2πkR (see eq. (2.23)) to the KK spectrum

thereby requiring tQCD(mPQ

√
2πkR) . O(1) in order for us to expect rρ < 1. Using

tQCD ≈ 10−5 sec ≈ 1010 eV−1, and kR ∼ 1 with R ∼ 10 µm, we find no significant deviation

of rρ from unity unless mPQ . 10−10 eV (which generally does not include an enhancement

factor larger than O(1)). Thus, over the parameter range of interest, we can expect that

warped extra dimensional axions dissipate the relic oscillation energy no more quickly that

the usual four dimensional scenario. This result matches the flat extra dimensional case.

We stress the remarkable central point: the extra dimensional axion scenario — whether

warped or flat — continues to remain cosmologically viable, dissipating the relic oscillation

energy at at rate no less than the usual four dimensional axion scenario.

5. Conclusions

In this paper, we have compared the basic phenomenology of axions embedded in a flat

extra dimension with axions embedded in a warped extra dimension. Given the recent

interest in multi-throat scenarios [20], large warped extra dimensions may provide new

model building avenues. Furthermore, current and planned experimental axion searches

will probe new parameter ranges in axion physics [23].

In a flat extra dimension, axion oscillations cause decoherence which leads to invisibil-

ity. We have found that warping the extra dimension controls the axion oscillations such

that the decoherence length becomes tunable in KK number. While this result appears to

give greater freedom in establishing the level of axion invisibility, kinematics govern the

number of modes that must be included in the axion linear superposition. As the warped
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Figure 5: Ratio of the energy densities for t̃0 = 0.1,1,10 as a function of the warp factor kR with

mPQ = 1/R. The k = 0 limit yields the flat case results in [15].

case demands that we include more modes relative to the flat case at a given parameter

choice, we surprisingly find that the overall effect leaves the invisibility unchanged relative

to flat compactifications.

Furthermore, in both warped and flat extra dimensions, kinematics also govern the

effective coupling, f̂ eff
PQ. While each mode couples with safe ∼ φn/f̂PQ, the on-shell state

couples to the standard model with the much larger f̂ eff
PQ ∼ fPQ/

√

N(E), where N(E)

is a function of the production energy. Thus, the production kinematics play a central

role in determining axion’s coupling to the standard model — for both warped and flat

compactifications. Constraints derived from energy loss mechanisms must take this effect

into account — it is not the coupling of an individual mode the establishes the bound but

rather the coupling of the superposition. Within extra-dimensional scenarios, the energy

dependent effective coupling, f̂ eff
PQ, controls astrophysical axion production, and therefore

controls the source’s axion luminosity. On the other hand, decoherence, arising from KK

axion oscillations, sets the expected measurable flux. In the warped geometry, the AdS

curvature, k, plays a crucial role in both effects and yet for processes that involve large

mode numbers, the expected phenomenology remains essentially unaltered from flat com-

pactifications. It would be interesting to perform a detailed analysis involving constraints

from astrophysical sources on axions in the warped extra dimension scenario we consider.

We have also found that warped compactifications remain cosmologically viable. As

in the flat case, we have found that the sympathetic KK mode oscillations induced by the

displaced zero-mode dissipate the axion oscillation energy at least the same rate as the usual

four-dimensional axion over most of the parameter range. If we include a large warp factor

(kR & 1) and take mPQtQCD . O(1), we find the possibility that the KK modes dissipate

the relic oscillation energy more quickly than the four-dimensional axion scenario. While

this result in principle allows a larger value of f̂PQ relative to the usual four-dimensional

bound (∼ 1012 GeV), the resulting factor by which the dissipation becomes increased is
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generally insufficient to allow a significant increase of f̂PQ.
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